

Modbus Installation and Instruction Manual

The information contained in this manual was current at the time of printing. The most current versions of all Hydro Instruments' manuals can be found on our website:

www.hydroinstruments.com

Table of Contents

I.	Background2
II.	Definitions2
III.	Support Types & Address Data Format
IV.	Programming Equipment Onto the Network4
	1. Programming Omni-Valves (OV-110 and OV-1000)4
	2. Programing Vaporizers (VPH-10000)5
	3. Programming Gas Detectors (GA-180)5
	4. Programming Automatic Changeover Controller (CS-110)6
	5. Programming Residual Analyzers (RAH-210 and RPH-250)6
	6. Programming Turbidimeter, Gas Detector, and PID Controller
	(TH-4000, GA-171, and HC-220)7
٧.	Programming Masters7
	TABLES
	Table 1. Data Formats and Baud Rates Supported by Hydro Instruments3
	Table 2. Wiring connections for Modbus RTU3
	Table 3. Description of Function Codes for Hydro Instruments Equipment7
	Table 4. Modbus OV-110 and OV-1000 Omni-valve8-9
	Table 5. Modbus VPH-10000 Vaporizer9
	Table 6. Modbus GA-180 Gas Detector10-11
	Table 7. Modbus CS-110 Automatic Changeover Controller11-12
	Table 8. Modbus RAH-210 and RPH-250 Residual Analyzers12-16
	Table 9. Modbus TH-4000 Turbidimeter16-17
	Table 10. Modbus GA-171 Gas Detector17-18
	Table 11. Modbus HC-220 PID Controller18-20

Modbus Communication Set-up and Installation

I. Background

Modbus, developed in 1979, is a serial communications protocol to be used with programmable logic controllers (PLCs) to read or write digital messages sent over the network. It is perhaps one of the most widely used communication protocols as it is free to use, easy to program and maintain, and was developed specifically for industrial use. Using a master/slave network, it can transmit data in real time giving it an advantage over other networks. Modbus can support up to 247 devices and is used to define both the physical layer (electrical connections) and the application layer (way in which to communicate). All devices on the network must have the same physical configuration consisting of the data format and baud rate.

Before setting up/installing the Modbus communication network onto Hydro Instruments equipment, familiarize yourself with the information contained in this packet. If you have any questions please contact Hydro Instruments.

Electrical Warning: Programming these devices does include electrical shock risk. Take care to avoid electrical shocks and do not touch any part of the power line unless you are certain the power has been disconnected.

II. Definitions

Physical Layer: The physical layer is the actual hardware and electrical termination set-up used to connect the master and slaves together for Modbus communication. All Hydro Instruments equipment outlined in this document supports "Modbus RTU" on a 2-wire RS-485 network.

Baud Rate: The baud rate is the modulation of the signal between devices.

Node: The node is the programmed number given to the slave so that the master can communicate specifically with that unit when requested. Thus, each unit should have its own unique node number.

Application Layer: This is the layer closest to the end user. It interacts with the software application to display information in a human-recognizable format.

Master: The master is the main controller of the network (some programmers may be more familiar with the "server"). There can only be one master per network which is the only device that can read and write information to the other devices (or slaves). The master may be a computer or any type of SCADA system.

Slave: The slave, or "client", is any PLC connected to the master. Each slave will have a specific node which will be used by the master to communicate to that specific PLC.

Function Code: The function code tells the slave what type of information is being requested by the master. This information may either be to read or write bits, or to read or write registers. The function code is an integer from 1 to 127 and that number is interpreted by the slave as to what information is requested. Thus, the same function code may serve two different purposes on two different instruments.

Data Address: The data address in decimal format is an indexing integer uniquely identifying each variable stored by the selected device.

Data Quantity: The data quantity tells the slave how many bits or registers of data are going to the data address.

III. Support Types (Physical/Electrical Standards)

1. RS-485

The RS-485 network is supported by Hydro Instruments equipment and is the most commonly used physical layer. It allows for connection to multiple slaves (up to 247), has excellent noise immunity, high speed (up to 35Mbps), and cables can be used up to 4,000 feet. The RS-485 version of Modbus is commonly referred to as Modbus RTU. Aside from the physical connections, the user must define the baud rate and the data format so that both the master and the slave have the same format. The data formats and baud rates that are supported can be seen in Table 1.

2. Address Data Format - The published Modbus addresses are decimal addresses and use the standard notation prefix for decimal (no prefix).

Table 1. Data Formats and Baud Rates Supported by Hydro Instruments

Data Format	Baud Rates
8/N/1	2400
8/N/2	4800
8/E/1	9600
8/0/1	19200
	38400
	57600
	115200
	250000

Hydro Instruments uses a half-duplex (2 wire) interface type. Hydro Instruments also recommends that the slaves be "daisy chained" together so that only one connection to the master is required. Cat 5 cable is the recommended cable to use and the wiring should be installed according to Table 2.

Table 2. Wiring connections for Modbus RTU

CAT 5 Cable	RS-485 Terminal	Equipment Terminal
Brown & white	V+	
Blue &white	А	A
Blue	В	В
Brown	V-(GND)	GND

The RS-485 network requires a "termination resistor" installed at either end of the network when using very long cable runs (>300 feet) at high baud rates (> 19200). Contact Hydro Instruments for more information.

3. *TCP/IP*

This network architectural model can be used to communicate through Ethernet or WiFi and has the advantage of being able to control Modbus devices over the internet. This version is referred to as Modbus TCP/IP. Hydro Instruments does not currently sell the devices for this communication and recommends using an intermediate hub which can connect to the RS-485 terminal. The user can then communicate to the hub using the configuration outlined in Section III.1, and then communicate to this hub over the internet. Contact your supplier for installation information.

IV. Programming Equipment onto the Network:

1. Programing Omni-Valves (OV-110 and OV-1000)

Programming Omni-valves (slaves) should be performed after the physical layer has been installed (Section III). Omni-valves purchased after October 2013 will be standard equipped to communicate with Modbus. If purchased before said date, contact Hydro Instruments.

- **I.** Determine the baud rate and data format of the master controller.
- II. From the main screen, press the "down" key until the password screen appears. Enter the password, "110" (OV-110) or "1000" (OV-1000) using the "plus" and "minus" keys.
- Once the correct password appears on the screen, continue to press the down key until the text "ADCAL" is blinking, then press the plus key.
- **IV.** Press the down key once so that "Yes" is blinking. Press and hold the "down" key for approximately 5-10 seconds.
- **V.** A new set of screens should appear. Go down two screens using the "down" key until the "Modbus" screen appears.
- **VI.** Use the "plus" key to select the baud rate.
- VII. Press the "down" key once. Then enter the node number using the "plus" key. Save this number to program the master controller and to ensure the same number is not given to two units.
- **VIII.** Press the "down" key once. Then enter the data format using the "plus" key.
 - **IX.** Cycle the power to save the information.

2. Programming Vaporizers (VPH-10000)

Programming Vaporizers should be performed after the physical layer has been installed (Section III). Refer to the steps below to configure the VPH-10000 vaporizer baud rate, node number and data format to communicate with the network.

- **I.** Determine the baud rate and data format of the master controller.
- II. From the main screen, press the "down" key until the password screen appears. Enter the password "100" using the "plus" and "minus" keys.
- III. Once the correct password is blinking continue to press the down key until the Modbus screen appears.
- **IV.** Using the "plus" and "minus" keys, enter the baud rate that matches the master/server.
- **V.** Press the "down" key so that the node number is blinking and enter the node number using the "plus" and "minus" keys. Save this number and make sure it does not match with any other equipment on the network.
- **VI.** Press the "down" key so that the data format is blinking. Enter the data format that matches the master/server.
- **VII.** Cycle the power to save the information.

3. Programming GA-180 Gas Leak Detectors

Programming the GA-180 Gas Detectors should be performed after the physical layer has been installed (Section III). Refer to steps below (and GA-180 O&M Manual Figure 8) to configure the GA-180 baud rate, node number, and data format to communicate with the network.

- I. Determine the baud rate and data format of the master controller.
- II. From the main screen, press the "down" key until the password screen appears. Enter the password "180" using the "plus" and "minus" keys.
- III. Once the correct password is blinking press the down arrow key. Then with "Sensor" blinking, press and hold the "minus" key until the Modbus setup screen appears.
- IV. Using the "plus" and "minus" keys, enter the baud rate that matches the master/server.
- V. Press the "down" key so that the node number is blinking and enter the node number using the "plus" and "minus" keys. Save this number and make sure it does not match with any other equipment on the network.
- VI. Press the "down" key so that the data format is blinking. Enter the data format that matches the master/server.
- VII. Cycle the power to save the information.

4. Programming CS-110 Automatic Changeover Controller

Programming the CS-110 Automatic Changeover controllers should be performed after the physical layer has been installed (Section III). Refer to steps below (and CS-110 O&M Manual) to configure the CS-110 baud rate, node number, and data format to communicate with the network.

- I. Determine the baud rate and data format of the master controller.
- II. From the main screen, press the "down" key until the password screen appears. Enter the password "110" using the "plus" and "minus" keys.
- III. Once the correct password is blinking press the down arrow key. Then continue to press the "down" key until the Modbus setup screen appears.
- IV. Using the "plus" and "minus" keys, enter the baud rate that matches the master/server.
- V. Press the "down" key so that the node number is blinking and enter the node number using the "plus" and "minus" keys. Save this number and make sure it does not match with any other equipment on the network.
- VI. Press the "down" key so that the data format is blinking. Enter the data format that matches the master/server.
- VII. Cycle the power to save the information.

5. Programming RAH-210 and RPH-250 Residual Analyzers

Programming the RAH-210 and RPH-250 Residual Analyzers should be performed after the physical layer has been installed (Section III). Refer to steps below (and O&M Manuals) to configure the RAH-210 / RPH-250 baud rate, node number, and data format to communicate with the network.

- I. Determine the baud rate and data format of the master controller.
- II. From the main screen, press and hold the "down" key for at least 5 seconds until the first hidden screen appears. Use the "down" key to navigate to the 12th hidden screen which is the Modbus setup screen.
- III. Using the "plus" and "minus" keys, enter the baud rate that matches the master/server.
- IV. Press the "down" key so that the node number is blinking and enter the node number using the "plus" and "minus" keys. Save this number and make sure it does not match with any other equipment on the network.
- V. Press the "down" key so that the data format is blinking. Enter the data format that matches the master/server.
- VI. Cycle the power to save the information.

6. Programming TH-4000 Turbidimeter, GA-171 Gas Detector, HC-220 PID Controller

Programming the TH-4000 Turbidimeter, GA-171 Gas Detector, or HC-220 PID Controller should be performed after the physical layer has been installed (Section III). Refer to steps below to configure the baud rate, node number, and data format to communicate with the network.

- I. Determine the baud rate and data format of the master controller.
- II. From the main screen, press and hold the "down" key for at least 5 seconds until the Modbus setup screen appears.
- III. Using the "plus" and "minus" keys, enter the baud rate that matches the master/server.
- IV. Press the "down" key so that the node number is blinking and enter the node number using the "plus" and "minus" keys. Save this number and make sure it does not match with any other equipment on the network.
- V. Press the "down" key so that the data format is blinking. Enter the data format that matches the master/server.
- VI. Cycle the power to save the information.

V. Programming Masters:

Be sure that the electrical terminations are complete and accurate. Also confirm that the baud rate and data format are the same on the master as they are on the slaves. Different software may have different ways of displaying and programming information on the device, however the function code and addresses for the specified equipment will be the same regardless of the software being used. Refer to the tables below for setting the equipment parameters on the master/server.

Function Code Designations:

Table 3. Description of Function Codes for Hydro Instruments Equipment

Function Code	Function Name	unction Name Description		Response Packet Size
01	read coils	read 1 to 2000 bits	8	5 or 6 + N/8
02	read discrete inputs	read 1 to 2000 bits	8	5 or 6 + N/8
03	read hold registers	read 1 to 125 registers	8	5 + 2N
04	read input registers	read 1 to 125 registers	8	5 + 2N
05	write a single coil	write 1 bit	8	8
06	write a single register	write 1 register	8	8
15	write multiple coils	write 1 to 2000 bits	9 or 10 + N/8	8
16	write multiple registers	write 1 to 123 registers	9 + 2N	8

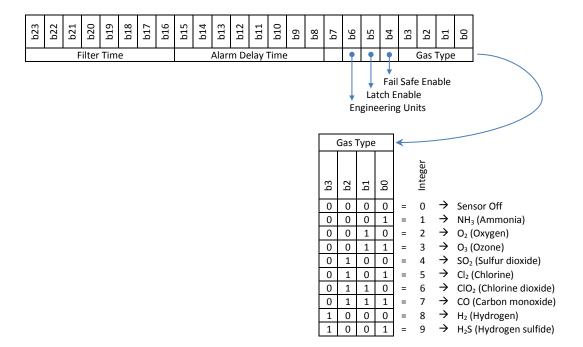
VARIABLE ADDRESSES AND REGISTER VALUES

Table 4. Modbus OV-110 and OV-1000 Omni-valve Variable Addresses, Register Values, and Features

Name	Туре	Address	Register Value	Feature
			0	Automatic
Run Mode	Integer	0	1	Manual
			2	Check Valve Position
			0	Normal
			1	Flow Signal Loss
			2	Low Flow
Alarm Status	Intogor	1	3	Res/ORP Loss
Alaitii Status	Integer	1	4	Low Residual
			5	High Residual
			6	Flow + Resl Loss
			7	Dose Signal Loss
			0	Flow Pacing
			1	Residual/ORP
Control Method	Integer	2	2	Compound Loop
			3	Step Feed
			4	Dual Input Feed Fwd
			0	%
	Integer	3	1	GPM
			2	MGD
Process Variable 1 Units			3	LPM
			4	MLD
			5	GPD
			6	m³/hr
		4	0	ppm
	Integer		1	mg/l
Process Variable 2 Units			2	mV
			3	рН
			4	GPD
			0	%
			1	PPD
			2	g/hr
			3	kg/hr
Process Output 1 Units	Integer	5	4	GPH
			5	GPM
			6	GPD
			7	LPM
			8	LPH
*PV1	Float	6/7		
PV1 Dosage	Float	8/9		
PV1 Span	Float	10/11		
PV1 Low Set	Float	12/13		
*PV2	Float	14/15		
PV2 Set Point	Float	16/17		
PV2 Span	Float	18/19		

PV2 Integral	Float	20/21
PV2 Low Set	Float	22/23
PV2 High set	Float	24/25
*PO1	Float	26/27
PO1 Span	Float	28/29
PO1 Manual	Float	30/31
*PV3	Float	32/33
PV3 Set Point	Float	34/35
PV3 Span	Float	36/37
PV3 Integral	Float	38/39

^{*}Values are read only and cannot be edited by the user. However, PV1, PV2, and PV3 can each be selected to either be read at the analog input channels or set over Modbus.


Table 5. Modbus VPH-10000 Vaporizer Variable Addresses, Register Values, and Features

Name	Туре	Address	Register Value	Feature
*Gas Temperature	Integer	1		
*Gas Pressure	Integer	2		
Gas Pressure Span	Integer	3		
High Pressure Alarm Level	Integer	4		
*Superheat Temperature	Integer	5		
Superheat Alarm Set Point	Integer	6		
*Control Water Temperature	Integer	7		
Water Temperature Set Point	Integer	8		
High Temperature Alarm Set Point	Integer	9		
Low Temperature Alarm Set Point	Integer	10		
*Aux Water Temperature	Integer	11		
			0	Normal
*Water Level	Integer	12	1	High
water Lever		12	2	Low
			3	Low Low
*Heater Power Output (kW)	Integer	13		
*Heater Power Output (%)	Integer	14		
*Heater Element Temperature	Integer	15		
Temperature Units	Integer	16	0	Celsius
remperature offits	milegei	10	1	Fahrenheit
Pressure Units	Integer	17	0	PSI
Flessure Offics	milegei	17	1	Bar
			0	Normal
			2	Low Water Temperature
			3	High Water Temperature
			4	Heater Over Temperature
			5	Superheat Alarm
*Alarm Status	Integer	18	6	High Water Alarm
			7	Low Water Alarm
			8	PRV Burst Disc
			9	EXP Burst Disc High Pressure
			10	High Pressure

*Values are read only and cannot be edited by the user.

Table 6. Modbus GA-180 Gas Detector Variable Addresses, Register Values, and Features

Name	Type	Address	Descr	iption
*SensorLive(1 through 16)	Array of Integers	1 through 16	Array holds all 16 live sensor values (ppm or %)	For example 75 = 7.5ppm
SensorType(1 through 16)	Array of Integer Bit Fields	17 through 32	Array holds the sensor co sensors. Each integer value following fields: b23-b16 = Filter Time b15-b8 = Alarm Delay Tir b6 = Engineering Units (C b5 = Latch Enable b4 = Fail Safe Enable b3-b0 = Gas Type	ue is a bit field, with the

SensorSpan(1 through 16)	Array of Integers	33 through 48	Array holds all 16 sensor span values		For example 100 = 10.0ppm					
				Intege	r Value	Status				
		49 through	Amari Isalala all	0		Off				
*ConcorCtotus(1 through 14)	Array of		Array holds all	•	1	Normal				
*SensorStatus(1 through 16)	Integers		64	16 sensor status values		2	Danger			
						04	Status values	***	3	Alarm
				4	4	Error				
LowAlarm(1 through 16)	Array of	65	Array holds a	Array holds all 16		or example				
LowAlaim(1 through 16)	Integers	through	sensor low alarm values		10 = 1.0ppm					

		80										
HighAlarm(1 through 16)	Array of Integers	81 through 96	Array holds a sensor high a values		For example 20 = 2.0ppm							
*Temperature	Integer	97	Live temperatur thermocoup (C or F)		For example 75 = 75F							
		98		Intege	r Value	Status						
*TempStatus	Integer		98	98	Temperature	()	Normal				
rempstatus					70	70	70	90	90	90	status	•
				2		Error						
TempSetup	Integer Bit Field	99, 100, 101	A bit field which holds the temperature configuration: b16 = Temp Units (0=C, 1=F) b15-b8 = Alarm Delay Time b7-b0 = High Alarm Temp (C or F)									

b16	b15	b14	b13	b12	b11	b10	69	8q	b7	9q	p2	b4	p3	b2	b1	p0
•	Alarm Delay Time							High Alarm Temp								
-																
Temn Units																

RemoteAck	Integer	102	Remote acknowledge		Set to 1 to remote cknowledge alarm
*AnyLowAlarm	Integer	, , , , , , , , , , , , , , , , , , ,		Integer Val 0 1	ue Status No Alarm Any Alarm
*AnyHighAlarm	Integer	104	Indicates any sensor high alarm	Integer Val 0 1	ue Status No Alarm Any Alarm
*AnyFailAlarm	Integer	105	Indicates any sensor fail alarm	Integer Val 0 1	ve Status No Alarm Any Alarm

^{*}Values are read only and cannot be edited by the user.

Table 7. Modbus CS-110 Automatic Changeover Controller Variable Addresses, Register Values, and Features

Name	Туре	Address	Description					
			Integer Value	State				
*\/1C+++	Intonor	4	0	Off				
*V1State	Integer	ı	1	On				
			2	Empty				
V1RunMins	Integer	2	Run time in minutes					
*V1Scale	Float	3,4	Scale reading	(e.g., 868 kg)				
V1ScaleSpan	Float	5,6	Scale span value	e (e.g., 1,000 kg)				
			Integer Value	State				
*\/2C+o+o	Integer	11	0	Off				
*V2State	Integer	11 -	1	On				
			2	Empty				

V2RunMins	Integer	12		Run time i	n minutes		
*V2Scale	Float	13,14		Scale reading	(e.g., 868 kg)		
V2ScaleSpan	Float	15,16		Scale span value	(e.g., 1,000 kg)		
			Int	eger Value	Setting		
ScaleUnits	Intogor	20		0	Off		
(Enable / Scale Units)	Integer	20	1		Kg (kilograms)		
				2	Pd (pounds)		
OnDelayTime	Integer	21		Valve turn on dela	y time in seconds		
RemoteAck	Intogor	22	Domot	e acknowledge	Set to 1 to remote		
Remoteack	Integer	22	Kemot	e acknowledge	acknowledge alarm		
			Remote	Integer Value	<i>Behavior</i>		
***RemoteCtrl	Intogor	22	control	0	Turn OFF both valves		
Remotectri	Integer	23	for	1	Turn ON valve 1		
			valves	2	Turn ON valve 2		

Table 8. Modbus RAH-210 and RPH-250 Residual Analyzers Variable Addresses, Register Values, and Features

Name	Туре	Address		Descript	ion			
*Temp	Integer	1	Temperature live (C or F		For example 74 = 74F			
TempManual	Integer	2	Temp manual (Kelvin x 10)		2555 =	or example = 255.5K, display shows C or F		
TempMode	Integer	3	Temp mode Integer		0	Setting Auto		
					1	Manual		
Town Units	Intonor	4	Taman umita		e <u>r Value</u>	Setting		
TempUnits	Integer	4	Temp units		0	C (Celsius)		
			nt live colibrat	pH live calibrated value		F (Fahrenheit)		
*Ph	Integer	10	ph live calibrat (pH x 10			or example 5 = 4.25 pH		
			(рп х то		r Value	Setting		
					0	Auto		
PhMode	Integer	11	pH mode		<u>. </u>	Manual		
Timodo	Intogol		primodo		2	Monitor		
					3	None		
PhFilterTime	Integer	12	pH ave	erage filter tir	ne in sec			
DlaMararral		10	pH manual			or example		
PhManual	Integer	13	(pH x 10	00)	42	5 = 4.25 pH		
PhLow	Integer	14	pH low alarm	n value	F	or example		
FILUW	meger	14	(pH x 10		42	5 = 4.25 pH		
PhHigh	Integer	15	pH high alarn			or example		
111111911	integer	10	(pH x 10	,		5 = 4.25 pH		
**FlowDP	Hex	20	decimal	0x50		x 1		
			position	0x31		x 10		

^{*}Values are read only and cannot be edited by the user.

***Value is not persistent, and the command is ignored when tanks are empty.

				0x22		x 100		
				0x13		x 1000		
Flow	Integer	21		Flow live	!			
FlowSpan	Integer	22		Flow spar	า			
FlowThreshold	Integer	23		Flow threshold for	PO1F	Flow		
FlowMinCLC	Integer	24	Flov	v min to stop Resl	in CL	.C mode		
FlowStop	Integer	25		owSpan below	10	For example		
		2/		n stop		= 10% of span		
FlowLow	Integer	26		low low alarm value	ue (U	•		
				or Value		Setting %		
				1		GPM		
				2		MGD		
FlowUnits	Integer	27		3		LPM		
				4		MLD		
				5		GPD		
		6				m³/hour		
Flori Dominio	1	20	Flow dos	age value		For example		
FlowDosage	Integer	28		100)		125 = 1.25%		
FlowFilterTime	Integer	29	Flov	v average filter tim	ne in s	seconds		
				Hexadecimal Va	lue	Float Scale Factor		
			Turb1	0x50		x 1		
**Turb1DP	Hex	30	decimal	0x31		x 10		
			position	0x22		x 100		
				0x13		x 1000		
*Turb1	Integer	31		Turb1 live (turl				
T 14M 1	1	0.0	T 14	Integer	Value			
Turb1Mode	Integer	32	Turb1 mod			Off		
Turb1Cnon	Intogor	33			<u> </u>	On		
Turb1Span Turb1High	Integer Integer	34		Turb1 spa Turb1 high alarr				
ruibinigii	meger	34		Hexadecimal Va		Float Scale Factor		
			Turb2	0x50	iiuc	x 1		
**Turb2DP	Hex	40	decimal	0x31		x 10		
1 41 5251	l lox	.0	position	0x22		x 100		
			'	0x13		x 1000		
*Turb2	Integer	41		Turb2 live (turl	bidity)			
				Integer				
Turb2Mode	Integer	42	Turb2 mod	de 0		Off		
				1		On		
Turb2Span	Integer	43		Turb2 spa				
Turb2High	Integer	44		Turb2 high alarr				
				Hexadecimal Va	lue	Float Scale Factor		
440 100		50	Residual	0x50		x 1		
**ResIDP	Hex	50	decimal	0x31		x 10		
			position	0x22		x 100		
*Doc!	Intoger	F1	-	0x13	otod :	x 1000		
*Resl ReslSetPoint	Integer	51 52		esidual final calibr				
Resilow	Integer Integer	53	Residual set point for PID ctrl Residual low alarm value (0=Off)					
ReslHigh	Integer	<u>55</u>	Res			· · · · · · · · · · · · · · · · · · ·		
ixesii iigi i	Integer	J4	Residual high alarm value					

ReslSpan	Intege	r	55				F	Residual spar	n	
Resispan	intege	,ı	- 55					Integer V		Setting
ReslMode	Intege	۲.	56		Re	esidual ser	sor	0	uiuc	mV cell
Resilvious	mog	,	00			mode		1		4/20mA sensor
								Integer Value		Setting
ReslUnits	Intege	ar .	57		Ę	Residual ur	ite	0	arac	PPM
Residints	intege	'	37			rtosiadai di iito		1		MG/L
					F	Residual in	egral v	alue	F	or example
ReslIntegral	Intege	er	58		•	(%)		aide		25 = 22.5%
ReslFilterTime	Intege	er	59					age filter tin		
rtosn irtoi riinto	meg	<i>,</i> ,	<u> </u>			rtoolat		decimal Valu		loat Scale Factor
						PO1	770714	0x50	,	x 1
**PO1DP	Hex		60			ecimal		0x31		x 10
	11011					osition		0x22		x 100
								0x13		x 1000
PO1		Intege	r	61			PO1	I final calibra	ated v	
PO1Manual		Intege		62				PO1 man		
PO1Span		Intege		63				PO1 spa		
		J						Integer V		Setting
								0		%
								1		PPD
DO411-31-						DO1		2		GR/H
PO1Units		Intege		64	64	PO1 units		3		KG/H
								4		GPH
								5		GPM
								6		GPD
						Integer V	alue	Setting		
PO1GasType		Intege	r	65		PO1 gas type		1		Cl ₂
								-1		SO ₂
								Flag Bit	A	larm Condition
								b0	Hi	gh Turbidity 1
								b1	Hi	gh Turbidity 2
								b2	Turk	oid 1 Signal Loss
								b3	Turk	oid 2 Signal Loss
								b4		Low Flow
						Alarm s	tatus	b5		ow Signal Loss
AlarmStatus		Intege	er	70		flag b		b6		ata Log Error
						l liag t	11.3	b7		ermistor Failure
								b8		ligh Residual
								b9		_ow Residual
								b10	Res/	ORP Signal Loss
								b11		High pH
								b12		Low pH
								b13		Node COM Error
						Alarm r	node	Integer V	alue	Setting
AlarmMode		Intege	r	71				0		No Latch
					setting			1 Latch		
AlarmTime		Intege	r	72				n delay time	in sec	
						Relay	Inte	eger Value		Setting
Relay1Mode		Intege	er	80		mode				esl High Alarm
						setting	setting		R	esl Low Alarm

				2	Turk	oid 1 High Alarm
				3		oid 2 High Alarm
				4		High/Low Alarm
				5	рп	Any Alarm
				Integer I	/alua	•
						Setting
			Dalass	0 1		esl High Alarm
DalayaMada	Intonor	01	Relay	2		esl Low Alarm
Relay2Mode	Integer	81	mode			oid 1 High Alarm
			setting	3		oid 2 High Alarm
				4	рн	High/Low Alarm
				5	101	Any Alarm
				Integer I		Setting
				0		esl High Alarm
D 1 014 1		00	Relay	1		esl Low Alarm
Relay3Mode	Integer	82	mode	2		oid 1 High Alarm
			setting	3		oid 2 High Alarm
				4	рн	High/Low Alarm
				5		Any Alarm
				<i>Integer</i> I		Setting
				0		esl High Alarm
		83	Relay	1		esl Low Alarm
Relay4Mode	Integer		mode	2		oid 1 High Alarm
			setting	3		oid 2 High Alarm
				4	рН	High/Low Alarm
				5		Any Alarm
Relay1	Integer	84			ay 1 state	
Relay2	Integer	85	Relay 2 state			
Relay3	Integer	86	Relay 3 state			
Relay4	Integer	87			ay 4 state	
DataLogEnb	Integer	90			log enable	
DataLogTime	Integer	91	D:		e interval in s	
				Int	eger Value	Setting
					0	Resl
			AO1 mod	do	1	Temp
AO1Mode	Integer	100	setting		2	pН
			Setting		3	Turb 1
					4	Turb 2
					5	PO1
				Int	eger Value	Setting
					0	Resl
			AO2 mo	40	1	Temp
AO2Mode	Integer	101	setting		2	рН
			Setting		3	Turb 1
					4	Turb 2
					5	PO1
				Int	eger Value	Setting
					0	Resl
A O 28 A = -1 -	14	100	AO3 mo	de	1	Temp
AO3Mode	Integer	102	setting		2	рН
					3	Turb 1
					4	Turb 2

				5	PO1
				Integer Value	Setting
				0	Resl
		103	AO4 mode setting	1	Temp
AO4Mode	Integer			2	рН
				3	Turb 1
				4	Turb 2
				5	PO1
	Integer	110	Dun mada	Integer Value	Setting
RunMode			Run mode	0	Auto
			setting	1	Manual
				Integer Value	Setting
				0	Off
CtrlMode	Integer	111	Control mode	1	Flow
				2	Resl
				3	Compound

Table 9. Modbus TH-4000 Turbidimeter Variable Addresses, Register Values, and Features

Name	Туре	Address		D	escription	 າ		
				1	decimal Valu			
			Turb1		0x50	x 1		
**Turb1DP	Hex	1	decimal		0x31	x 10		
			position		0x22	x 100		
					0x13	x 1000		
*Turb1	Integer	2	Turb1 live					
Turb1Mode	Integer	3		Turb1	mode (on c	r off)		
Turb1Span	Integer	4		Tu	rb1 span lev	rel		
Turb1High	Integer	5		Turb1	high alarm	level		
Turb1AvgTime	Integer	6	Turb		ge filter time			
	Hexadecimal V					e Float Scale Factor		
			Turb2		0x50	x 1		
**Turb2DP	Hex	11	decimal		0x31	x 10		
			position		0x22	x 100		
					0x13	x 1000		
*Turb2	Integer	12			Turb2 live			
Turb2Mode	Integer	13		Turb2	mode (on c	r off)		
Turb2Span	Integer	14		Tu	rb2 span lev	rel		
Turb2High	Integer	15		Turb2	2 high alarm	level		
Turb2AvgTime	Integer	16	Turb	2 avera	ge filter time			
					Flag Bit	Alarm Condition		
					b0	High Turbidity 1		
AlarmStatus	Integer	20	Alarm status fl	an hite	b1	High Turbidity 2		
Alaimstatus	meger	20	Alarm status flag bits		b2	Turbid 1 Signal Loss		
					b3	Turbid 2 Signal Loss		
					b4	Data Log Error		

^{*}Values are read only and cannot be edited by the user.

**The decimal positions can be read but should not be written over Modbus since they can only be changed on the display.

				b5	1/0	Node COM Error		
AlarmMode I				Integer Value		Setting		
	Integer	21	Alarm mode setting	0		No Latch		
				1		Latch		
AlarmTime	Integer	22	Alarm delay time in seconds (set by user)					
Relay1	Integer	30	F	Relay 1 state	Э			
Relay2	Integer	31	Relay 2 state					
DataLogEnb	Integer	40	Data log enable					
DataLogTime	Integer	41	Data log time interval in seconds					

Table 10. Modbus GA-171 Gas Detector Variable Addresses, Register Values, and Features

Name	Туре	Address			De	escrip	tion	
*S1	Integer	1		S1 live				For example
31	micgei	ı		(ppm x 10))			32 = 3.2 ppm
S1Span	Integer	2		S1 span				For example
оторин	micgo			(ppm x 10		T	32 = 3.2ppm	
				Integer V	/alue		etting	
				0			nel OFF	-
				1			NH ₃	Ammonia
					2		02	Oxygen
			S1		3		O ₃	Ozone
S1GasType	Integer	3	gas	4			SO ₂	Sulfur dioxide
			type	5			CI_2	Chlorine
				6				Chlorine dioxide
				7			CO	Carbon monoxide
				8		H ₂		Hydrogen
				9		I	H_2S	Hydrogen sulfide
			Integ			teger	<i>Value</i>	Setting
S1AlarmMode	Integer	4	S1 aları	m mode		0		No Latch
						1		Latch
S1HighLevel	Integer	5	S1 h	nigh alarm l	level		F	or example
	miegei	3		(ppm x 10)		32 = 3.2 ppm		
S1AlarmTime	Integer	6					ne in sec	
S1FilterTime	Integer	7		S1 ave	raging	filter	time in se	econds
*S2	Integer	11		S2 live			I	For example
J2	integer	11		(ppm x 10))			32 = 3.2 ppm
S2Span	Integer	12		S2 span				For example
323puii	micgei	12		(ppm x 10	•	•		32 = 3.2 ppm
				Integer V	/alue		etting	
				0			nel OFF	-
	S2		S2	1 2		NH_3		Ammonia
S2GasType	Integer	13	13 gas				O_2	Oxygen
			type		3		O_3	Ozone
				4		(SO ₂	Sulfur dioxide
				5			Cl ₂	Chlorine

^{*}Values are read only and cannot be edited by the user.

** The decimal positions can be read but should not be written over Modbus since they can only be changed on the display.

				6		CIO ₂	Chlorine dioxide		
				7		CO	Carbon monoxide		
				8		H_2	Hydrogen		
				9		H_2S	Hydrogen sulfide		
			S2 alarm mode		teger Value	Setting			
S2AlarmMode	Integer	14			0	No Latch			
					11	Latch			
S2HighLevel	Integer	15	S2 high alarm level		S2 high alarr		2 high alarm level		For example
32Hightevel	meger	10		(ppm x 10)			32 = 3.2ppm		
S2AlarmTime	Integer	16		S2 al	arm de	elay time in s	ay time in seconds		
S2FilterTime	Integer	17		S2 ave	raging	filter time in	n seconds		
						Flag Bit	Alarm Condition		
						b0	S1 High Alarm		
AlarmStatus	Intogor	20	Alarm o	status flag	hitc	b1	S2 High Alarm		
Alaimstatus	Integer	20	Alaim S	status nay	טונס	b2	S1 Loss Alarm		
						b3	S2 Loss Alarm		
					b4	I/O Node COM Error			

^{*}Values are read only and cannot be edited by the user.

Table 11. Modbus HC-220 PID Controller Variable Addresses, Register Values, and Features

Name	Туре	Address		Descr	iption		
				Hexadecima	al Value	Float Scale Factor	
			PV1	0x50)	x 1	
**PV1DP	Hex	1	decimal	0x31		x 10	
			position	0x22)	x 100	
				0x1:		x 1000	
PV1	Integer	2		PV1	live		
PV1Span	Integer	3		PV1	span		
PV1Low	Integer	4		PV1 low a	larm leve	l	
PV1MinCLC	Integer	5	PV1 flow	min in compo	und loop	control mode	
PV1Threshold	Integer	6		PV1 th	reshold		
PV1VarLagTimeK	Integer	7	PV1	flow used for	variable	lag time	
PV1Stop	Integer	8	below whi	PV1 percent of span below which stop (% x 100)		For example 3025 = 30.25%	
PV1Dosage	Integer	9	PV1 do: (dosage :			For example 125 = 1.25	
			, ,		r Value	Setting	
				()	PV1	
PV1Name	Integer	10	PV1 name		1	H2O	
					2	PRO	
					3	FLO	
				Intege	r Value	Setting	
				()	%	
					1	GPM	
PV1Units	Integer	11	PV1 units	2	2	MGD	
					3	LPM	
						4	MLD
				í	5	GPD	

				(,)	m³/hour				
PV1FilterTime	Integer	12	PV1 averaging filter time in seconds							
				Hexadecima	al Value	Float Scale Factor				
**PV2DP			PV2	0x50		x 1				
	Hex	21	decimal	0x31		x 10				
			position	0x22		x 100				
				0x13		x 1000				
PV2	Integer	22		PV1	PV1 live					
PV2Span	Integer	23	PV1 span							
PV2Low	Integer	24	PV1 low alarm level							
PV2MinCLC	Integer	25	PV2 flow min in compound loop control mode							
PV2Threshold	Integer	26	PV1 threshold							
PV2VarLagTimeK	Integer	27	PV1	PV1 flow used for variable lag time						
PV2Stop	Integer	28	PV2 percent of span below which stop		For example 3025 = 30.25%					
			(% x 1							
PV2Dosage	Integer	29	PV2 dos		For example					
	1111911		(dosage x			125 = 1.25				
		30			r Value	Setting				
DVON			DVO	(PV1				
PV2Name	Integer		PV2 name			H2O				
				2		PRO				
						FLO				
	Integer				r Value	Setting				
		31		(%				
						GPM				
PV2Units			PV2 units	3		MGD				
						LPM MLD				
						GPD				
						m³/hour				
PV2FilterTime	Integer	32	DV2 (averaging filte						
**PO1DP	Integer Hex	41		Hexadecima		Float Scale Factor				
				0x50		x 1				
				0x31		x 10				
			position	0x31		x 100				
			position	0x22 0x13		x 1000				
*PO1	Integer	42		PO1 live in auto mode						
PO1Manual	Integer	43	ļ ļ	PO1 value in manual mode						
PO1Span	Integer	44	PO1 span							
PO1Units	Integer	45			r Value	Setting				
				(%				
				1		PPD				
			DO1			GR/H				
			PO1 units	3	3	KG/H				
						GPH				
					5	GPM				
				e		GPD				
PO1GasType	Integer	46			r Value	Setting				
			PO1 gas type)	Cl ₂				
						SO ₂				

LagTimeK	Integer	51	Lag time fixed constant (secs)				
LagTimeMax	Integer	52	Lag time maximum in variable lag time mode (secs)				
VarLagTimeEnb	Integer	53	Variable les times		Integer Value		Setting
			Variable lag time enable		0		Off
			enable		1		On
CtrlMode	Integer	54			Integer Value		Setting
			control mode		0		Flow
					1		Resl
					2		Compound
RunMode	Integer	55	run mod	1	Integer Value		Setting
				0			Auto
					1		Manual
PVxLoss	Integer	56	PV1/PV2	11	Integer Value		Setting
			input loss action	0			Maintain Valve
			input ioss action		1		Close Valve
AlarmTime	Integer	57	Al	arm delay time (sec			s)
AlarmStatus	Integer	58	Alarm status flag bits		Flag Bit		Alarm Condition
					b0	PV1 low alarm	
					b1		PV1 loss alarm
					b2	PV2 low alarm	
					b3		PV2 loss alarm
							PV2 high alarm
					b5	1/0	O Node COM Error

^{*}Values are read only and cannot be edited by the user.

The variable type defines whether or not the data stored in the register is a real time value/number (float/floating point) or if the number will correspond to a feature or command (integer). In the case of integers, values have been developed so that the Omni-valve can change and display features like units, the control type, or control alarms and relays over the Modbus network. The following definitions for integer type values can be seen in table 5.

The Omni-valve integer type values correspond to Modbus registers. The Omni-valve float values correspond to two Modbus registers in which the float data is in the IEEE 754 format (32 bit). Using this format the first address reads/writes the most significant 16 bits, whereas the second address reads/writes the least significant 16 bits.

^{**}The decimal positions can be read but should not be written over Modbus since they can only be changed on the display.